Rocatinlimab Significantly Improves Clinical Responses in Patients with Moderate-To-Severe Atopic Dermatitis by Week 2 in a Randomized Double-blind Placebo-controlled Phase 2b Study

Emma Guttmann-Yassky, 1 Ehsanollah Esfandiari, 2 Hirota Arai, 3 Kenji Kabashima 4
1Icahn School of Medicine at Mount Sinai, New York, NY, USA; 2Kyowa Kirin, Marlow, UK; 3Kyowa Kirin, Tokyo, Japan; 4Kyowa Kirin, Princeton, NJ, USA; 5Graduate School of Medicine, Kyoto University, Kyoto, Japan

Introduction

• Rocatinlimab (AMG 451/KHK4083) is an investigational anti-OX40 monoclonal antibody that inhibits and reduces the number of OX40-expressing pathogenic T cells responsible for driving inflammatory responses 1-3

– Rocatinlimab met the primary endpoint in a multicenter, randomized, placebo-controlled phase 2b trial, demonstrating significantly improved Eczema Area and Severity Index (EASI) at week 16 compared with placebo (NCT03730102) 4

– Moderate-to-severe atopic dermatitis (msAD) can cause chronic cycles of pruritus and scratching, negatively impacting quality life 5,6

Objective

To investigate the onset of action of rocatinlimab on pruritus Numerical Rating Scale (pNRS) and EASI in adults with msAD

Methods

Baseline Characteristics

Pruritus was significantly improved with rocatinlimab by Week 2 in all cohorts (−18.40% to −21.96%; p ≤ 0.018) except 600 mg Q4W (−9.66%, p = 0.208), and in all cohorts by Week 4 (−15.70% to −27.19%; p ≤ 0.045).

Results

EASI improvements vs placebo were significant in all rocatinlimab cohorts by Week 6 (−20.50% to −32.13%; p≤0.001), and in the 300 mg Q2W and 600 mg Q2W cohorts by Week 2 (−13.27% and −13.66%, respectively; p≤0.028).

Conclusions

• Rocatinlimab improved pNRS and EASI by Week 2; improvements continued to Week 16 and were maintained off-treatment until the end of study

• Rocatinlimab represents a potential novel treatment option for patients with msAD and is being explored further in the comprehensive Phase 3 ROCKET program

Disclosures

Disclosure: E.S. has received research grants from Amgen, Arazenbio, Asana Science, AsanaMed, Boehringer-Ingelheim, Celgene Therapeutics, Coligan, DLilly, Envirosense, Kyowa Kirin, Leo Pharma, Medimmune, Pfizer, and Regeneron Pharmaceuticals, and is a consultant for Asana Biosciences, AsanaMed, Aslan Pharmaceuticals, AstraZeneca, Boehringer-Ingelheim, Celgene Therapeutics, Coligan, DLilly, Eli Lilly, Envirosense, Kyowa Kirin, Leo Pharma, Medimmune, Pfizer, and Regeneron Pharmaceuticals. H.E. has received research grants from Astellas Pharma, Boehringer-Ingelheim, Disil, Envirosense, Kyowa Kirin, Leo Pharma, Medimmune, Pfizer, Roche (GMP), Sanofi, Shionogi, Teva, and UCB, and is a consultant for Asana Biosciences, AsanaMed, Aslan Pharmaceuticals, AstraZeneca, Boehringer-Ingelheim, Celgene Therapeutics, Coligan, DLilly, Eli Lilly, Envirosense, Kyowa Kirin, Leo Pharma, Medimmune, Pfizer, Roche (GMP), Sanofi, Shionogi, Teva, and UCB. T.A. is an employee of Amgen. S.T. has received research grants from Kyowa Kirin, Kyorin, Leo Pharma, Medimmune, Mochida, Mitsubishi Tanabe Pharma, Otsuka Pharmaceutical, Pfizer, Pharma, Taiho Pharma, Terumo Pharmaceutical, and Takeda Pharmaceuticals, and is a consultant for Amgen. The authors thank Shannon Ran, PhD from Amgen and Divyaanka Iyer, PhD from Cactus Communications for providing medical writing support.

Acknowledgments: Emma Guttmann Yassky, Esra Gullasch, and Hirotaka Arai provided medical writing support for this manuscript. The authors thank Shannon Ran, PhD from Amgen and Divyaanka Iyer, PhD from Cactus Communications (part of Cactus Communications) for providing medical writing support.

Correspondence: Emma Guttmann Yassky, emma.guttmann@amgen.com