Neutralizing interleukin-13 increases skin microbial diversity: results from a Phase 3, randomized, double-blind, placebo-controlled trial of tralokinumab in adult patients with atopic dermatitis

Thomas Bieber,1 Lisa A. Beck,2 Andrew Pink,3 Hidehisa Saeki,4 Lawrence Eichenfield,5 Thomas Werfel,6 Anders Rosholm,7 Mads Røpke,7 Amy Paller8

1Department of Dermatology and Allergy, University Hospital, Bonn, Germany; 2Department of Dermatology, Medicine and Pathology, University of Rochester Medical Center, Rochester, NY, USA; 3St. John’s Institute of Dermatology, Guy’s and St. Thomas’ Hospitals, London, UK; 4Department of Dermatology, Nippon Medical School, Tokyo, Japan; 5Departments of Dermatology and Pediatrics, University of California San Diego School of Medicine, San Diego, CA, USA; 6Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany; 7LEO Pharma A/S, Ballerup, Denmark; 8Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago IL, USA

Background: A healthy skin barrier supports the growth of commensal bacteria, which protect the host from pathogenic bacteria and virulence factors. In atopic dermatitis, recent studies have pointed to a lack of microbial diversity in both lesional and non-lesional skin. Dysregulation of the skin microflora in atopic dermatitis is believed to be influenced by epidermal barrier disruption and Th2-driven inflammation, in which interleukin (IL)-13 plays a major role. Tralokinumab is a fully human monoclonal antibody that has proven efficacious in improving the signs and symptoms of moderate-to-severe atopic dermatitis by neutralizing the IL-13 cytokine. We investigated the change in microbial diversity in lesional skin of atopic dermatitis patients treated with tralokinumab in a Phase 3 clinical trial (ECZTRA 1; NCT03131648).

Methods: Patients with moderate-to-severe atopic dermatitis were randomized 3:1 to subcutaneous tralokinumab 300 mg or placebo every 2 weeks for 16 weeks. Skin swabs collected at baseline and after 8 weeks and 16 weeks of treatment were assessed for microbial diversity by DNA sequencing of 16S ribosomal RNA.

Results: Treatment with tralokinumab was associated with an increase in skin microbial diversity compared with placebo.

Conclusions: The increase in skin microbial diversity observed with tralokinumab treatment supports the notion that neutralization of IL-13 contributes to improving the hallmarks of atopic dermatitis by breaking the cycle of itching, scratching, skin barrier dysfunction, and immune-mediated inflammation, thereby shifting the microbial diversity on atopic dermatitis lesional skin towards a commensal flora. It remains to be elucidated whether the lack of microbial diversity in atopic dermatitis is a net result of an epidermal barrier defect or a cause of barrier dysfunction and inflammation.

Funding Source: The ECZTRA 1 study was sponsored by LEO Pharma A/S, Ballerup, Denmark.