Achieving Incrementally Greater Skin Improvement Thresholds with Upadacitinib in Moderate to Severe Atopic Dermatitis: A Pooled Analysis of Two Phase 3 Studies (Measure Up 1 and Measure Up 2)

Kristian Reich³, Richard G. Langley², Brian M. Calimlim³, Henrique D. Teixeira³, Jiewei Zeng³, Jonathan I. Silverberg⁴

³Translational Research in Inflammatory Skin Diseases, Institute for Health Services Research in Dermatology and Nursing, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ²Division of Clinical Dermatology and Cutaneous Science, Dalhousie University, Halifax, NS, Canada; ³AbbVie Inc., North Chicago, IL, United States; ⁴Department of Dermatology, The George Washington University School of Medicine and Health Sciences, Washington DC, United States

INTRODUCTION: Atopic dermatitis (AD) is a chronic, flaring, inflammatory disease associated with multiple skin manifestations and symptoms that can impact patients’ quality of life. Studies have shown that greater improvements on Eczema Area and Severity Index (EASI) are associated with to greater improvements in quality of life. Upadacitinib (UPA), an oral selective Janus kinase inhibitor, is being studied in phase 3 trials of adolescent and adult patients with moderate to severe AD (EASI ≥ 16; Body Surface Area ≥ 10%; validated Investigator Global Assessment of Atopic Dermatitis ≥ 3; age 12-75 years) randomized 1:1:1 to once-daily UPA 15mg, 30mg, or placebo (PBO). Reported here are the effects of UPA on skin improvement as assessed by EASI using pooled data from two phase 3 replicate trials (Measure Up 1 [NCT03569293; N=847]; Measure Up 2 [NCT03607422; N=836]).

METHODS: Degree of skin improvement was compared between UPA and PBO using the proportion of patients achieving ≥ 50%/75%/90%/100% improvement on EASI from baseline (EASI-50/EASI-75/EASI-90/EASI-100). Mutually exclusive categories of EASI improvement thresholds from baseline (EASI <50%; EASI 50–74%; EASI 75–89%; EASI 90–99%; EASI 100%) were used to characterize the distribution of skin improvement achieved. Distributions were descriptively compared to characterize the total proportion of patients achieving incrementally greater thresholds of skin improvement. This was computed by sequentially calculating the differences in EASI 100%, EASI 90–99%, EASI 75–89%, and EASI 50–74% proportions between two groups, then aggregating the differences to attain the total proportion of patients achieving an incrementally greater response threshold.

RESULTS: The proportion of patients achieving skin improvement was greater in both UPA 15mg and 30mg groups versus PBO at Week 16 for EASI-50 (75.9% and 83.9% versus 29.0%), EASI-75 (64.9% and 76.3% versus 14.8%), EASI-90 (47.8% and 62.2% versus 6.7%), and EASI-100 (15.4% and 22.9% versus 1.3%). The distribution of EASI improvement <50%/50-74%/75-89%/90-99%/100% at Week 16 was 24.1%/11.0%/17.1%/32.4%/15.4% for UPA 15mg, 16.1%/7.6%/14.1%/39.3%/22.9% for UPA 30mg, and 71.0%/14.2%/8.1%/5.4%/1.3%.
for PBO. Distribution comparisons showed that the total proportion of patients achieving incrementally greater skin improvement thresholds at Week 16 was 74.6% with UPA 15mg versus PBO, 82.6% with UPA 30mg versus PBO, and 40.9% with UPA 30mg versus UPA 15mg.

CONCLUSION: Greater proportions of adolescent and adult patients with moderate to severe AD achieve higher thresholds of skin improvement with once-daily UPA 15mg and UPA 30mg versus PBO. The total proportion achieving incrementally greater thresholds of skin improvement was greatest with UPA 30mg followed by UPA 15mg compared to PBO.

Kristian Reich has served as advisor and/or paid speaker for and/or participated in clinical trials sponsored by AbbVie, Affibody, Almirall, Amgen, Avillion, Biogen, Bausch Health (Valeant), Biogen, Boehringer Ingelheim, Bristol-Myers Squibb, Celgene, Centocor, Covagen, Dermira, Forward Pharma, Fresenius, Galapagos, Galderma, GlaxoSmithKline, Janssen, Kyowa Kirin, LEO Pharma, Lilly, Medac, Merck, Novartis, Miltenyi Biotec, Ocean Pharma, Pfizer, Regeneron, Samsung Bioepis, Sanofi, Sun Pharma, Takeda, UCB, and XenoPort.

Richard G. Langley has been a principal investigator for AbbVie, Amgen, Boehringer Ingelheim, Celgene, Eli Lilly, LEO Pharma, Merck, Novartis, Pfizer, and UCB Pharma; has served on scientific advisory boards for AbbVie, Amgen, Boehringer Ingelheim, Celgene, Eli Lilly, LEO Pharma, Merck, Novartis, Pfizer, and UCB Pharma; and has provided lectures for AbbVie, Amgen, Celgene, LEO Pharma, Merck, Novartis, and Pfizer.

Brian M. Calimlim, Henrique D. Teixeira, and **Jiewei Zeng** are full-time, salaried employees of AbbVie Inc. and may own AbbVie stock or stock options.

Jonathan I. Silverberg is an advisor, speaker, or consultant for AbbVie, Asana Biosciences, Dermavant, Galderma, GlaxoSmithKline, Glenmark, Kiniksa, LEO Pharma, Lilly, Menlo Therapeutics, Novartis, Pfizer, Realm Pharma, and Regeneron-Sanofi. He is also a researcher for GlaxoSmithKline.

Funding Statement: AbbVie Inc., funded this study and participated in the study design; study research; collection, analysis and interpretation of data; and writing, reviewing and approving of this publication. All authors had access to the data, and participated in the development, review, and approval, and in the decision to submit this publication. No honoraria or payments were made for authorship.